Machten Versie 09-05-2025 17:20 Schrijf de uitkomst telkens als één enkele macht. | ![]() | |
1 | Schrijf als één macht: \[9^{3y}\cdot (3^y)^7=\] | |
2 | Schrijf als één macht van 2:\[\frac{16\cdot2^5}{2\cdot2^4}=\] | |
3 | Schrijf als één macht:\[p^{-2}\cdot (p^2)^4=\] | |
4 | Schrijf als één macht van 2: \[4^{2x}\cdot 8^{2}\cdot 16^{x}=\] | |
5 | Schrijf als één macht: \[5\cdot5^{3a}\cdot5^{7}=\] | |
#423.11340v |
![]() | ||
6 | Reken uit zonder rekenmachine: \[791^{0}=\] | |
7 | Schrijf als één macht:\[\frac{(p^2\cdot q)^4}{p^{8}}=\] | |
8 | Schrijf als één macht:\[\frac{1}{7^{-3t}\cdot 7^5}=\] | |
9 | Schrijf als één macht:\[\frac{16}{t}\cdot \left(\frac{3t}{6}\right)^4=\] | |
10 | Schrijf als één macht: \[\frac{t^5\cdot t^2\cdot t^6}{t^3\cdot t^0}=\] | |
#423.11340a |
Antwoorden | ![]() | |
1 | \(3^{13y}\) | |
2 | \(2^{4}\) | |
3 | \(p^{6}\) | |
4 | \(2^{8x+6}\) | |
5 | \(5^{3a+8}\) | |
6 | \(1\) | |
7 | \(q^4\) | |
8 | \(7^{3t-5}\) | |
9 | \(t^3\) | |
10 | \(t^{10}\) | |
#423.11340 |